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Abstract

The Multi-state EHR-based Network for Disease Surveillance (MENDS) developed a pilot 

electronic health record (EHR) surveillance system capable of providing national chronic disease 

estimates. To strategically engage partner sites, MENDS conducted a latent class analysis 

(LCA) and grouped states by similarities in socioeconomics, demographics, chronic disease 

and behavioral risk factor prevalence, health outcomes, and health insurance coverage. Three 

latent classes of states were identified, which inform the recruitment of additional partner 

sites in conjunction with additional factors (e.g. partner site capacity and data availability, 

information technology infrastructure). This methodology can be used to inform other public 

health surveillance modernization efforts that leverage timely EHR data to address gaps, use 

existing technology, and advance surveillance.
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Introduction

In 2018, National Association of Chronic Disease Directors (NACDD), funded by 

Centers for Disease Control and Prevention (CDC), initiated the Multi-state EHR-based 

Network for Disease Surveillance (MENDS) to develop a near real-time, chronic disease 

surveillance system (https://chronicdisease.org/page/MENDSINFO/).1 MENDS, modeled on 

a Massachusetts program,2 aims to support chronic disease surveillance and inform public 

health program and policy development. An essential attribute of a surveillance system is 

that it is representative of the intended population to ensure accurate estimates of disease 

incidence, prevalence, quality, and other health events.3 Statistical methods that help group 

states, counties, or other geographies that support creating a representative population for 

key public health activities are needed. This short report explores the use of a latent class 

analysis (LCA) to inform state selection.

Methods

MENDS employed a latent class analysis (LCA) to group 50 states and the District 

of Columbia according to their similarities in socioeconomics, demographics, health 

insurance coverage, chronic disease and behavioral risk factor prevalence, based on prior 

methods developed for selection of representative comparison communities for a program 

evaluation.4 The LCA examined states, as opposed to communities or counties, as the 

organizing geographic unit for two reasons: 1) partner sites (e.g. health systems, health 

information exchanges) may not be limited to a smaller geography such as county, and 2) 

some information needed for this modeling was not easily available at smaller geographic 

levels. The goal of this LCA was to support data-informed selection of additional partner 

sites beyond the initial four sites identified for the project.

Data used for the LCA were from four broad domains: sociodemographic, prevalence of 

health-related risk factors and chronic disease, chronic disease-related health outcomes (e.g. 

heart disease deaths), and health insurance status. All data for the study were from publicly 

available sources (noted in Table 1): U.S. Census population estimates, the U.S. Census 

American Community Survey, and CDC Chronic Disease Indicators. These data sets had 

no personally identifiable information. To preserve stability of the LCA model given the 

relatively small number of units examined (n = 51), only 12 indicators from the four 

domains were used in the analysis.3 An indicator on persons ever-diagnosed with depression 

was added due to its high prevalence and possible negative effects on chronic disease 

self-management.5,6 Each variable was dichotomized prior to analysis to capture relative 

differences among the states as in Jiang et al.7 Analysis was performed using the Proc LCA 

package for SAS version 9.4.8,9

Results

Among alternative models, this three-class solution was identified as the best fitting model 

in 51% of iterations. This model had strong classification certainty (entropy = 0.97, 

minimum class probability = 0.78). In terms of model fit, the Akaike Information Criteria 

was 532.30, the Bayesian Information Criterion (BIC) was 623.10, and the sample size-
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adjusted BIC was 475.54. Core clusters of states remained relatively stable through many 

different model iterations (not shown). While model fit statistics indicated that a four-class 

solution could also be a fit to the data (log likelihood = −397.66 compared to log likelihood 

= −418.29 for a 3-class model), the small sample size (50 states and District of Columbia) 

and replicability of different iterations of the model led to selecting the three-class solution.

The three identified classes have a clear geographic orientation and strong similarities within 

each class. Class 1, the smallest class, contains 14 states and the District of Columbia 

(Figure 1). The states in this class have younger populations, lower proportions of non-

Hispanic White residents, higher proportions of Hispanic and non-Hispanic Asian residents, 

and lower rates of risk factors such as smoking, obesity, and depression (means for each 

class shown in Table 1; item response probabilities not shown). Class 2, the largest class, 

comprises 19 states that have higher percentages of non-Hispanic Black residents, lower 

percentages of people reporting that they have health insurance, higher percentages of 

people living below poverty level, and higher rates of risk factors for chronic disease. 

Class 3 has 17 states including many of the Great Plains states and less populated states 

in the Northeast. These states have higher proportions of non-Hispanic White residents and 

lower proportions of non-Hispanic Black residents. The states within each class do vary in 

population size (e.g. California and DC are in the same class), as evidenced by the large 

standard deviation for total population. Detailed characteristics of states and the District of 

Columbia by latent class were also compiled and are available upon request.

Discussion

The LCA analysis identified three distinct groups of states, which aids in MENDS 

project planning and may serve as an approach for similar efforts with chronic disease 

surveillance to consider. States within each class exhibited strong similarities in domains 

(e.g. sociodemographic) while these differed notably among the classes. In addition, the 

three classes have a clear geographic orientation. These findings suggest that the three 

classes are cohesive and can be used to identify states when selecting additional sites. The 

different distribution of characteristics in the three classes warrants additional investigation 

to understand the underlying factors driving these patterns (e.g. population chronic disease 

burden, insurance status, public health infrastructure, etc. The National Health and Nutrition 

Examination Survey (NHANES) used a similar strategy to group states and territories into 

four strata according to similarities in sociodemographics and health, but not based on 

LCAs.10 Although our LCA is limited by the small number of units under analysis, it 

generated results to inform continued recruitment of sites. Similar LCAs have been used to 

classify cities/towns into categories of chronic disease risk despite small sample sizes.7

Use of EHR data has the potential to advance public health surveillance and guide 

public health interventions,11 which may include approaches at various geographic levels. 

MENDS presents one opportunity to modernize chronic disease surveillance methods with 

timely EHR data. These results are only one part of the planning process, especially 

for EHR surveillance, which relies on engagement of clinical partner sites and resources 

for implementation. In the MENDS pilot, decisions to identify four initial partner sites 

were made prior to conducting the LCA analysis and relied upon partners’ ability and 
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interest to engage in the pilot. For future expansion, the underlying data from states in 

under-represented latent classes will help inform the selection of partner sites to increase the 

representativeness of MENDS. Although this work was undertaken as part of surveillance 

planning at a national level, it could also be replicated at smaller geographies (e.g. county) 

for other surveillance planning purposes.
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Figure 1. 
States and district of Columbia by latent class.
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